IN SILICO PREDICTION OF DELETERIOUS AND NON-DELETERIOUS nsSNPs IN CFTR GENE VARIANTS

نویسنده

  • BHADRA MURTHY
چکیده

Objective: The major objective of the study was to carry out comparative bioinformatics analyses to identify different nsSNPs that were predicted to be deleterious or damaging to the structure and functions of CFTR protein causing cystic fibrosis. Methods: The CFTR gene variants (nsSNPs) and their related protein sequences from Homo sapiens were subjected to computational analyses using the following bioinformatics tools (a) SIFT: a sequence-homology based prediction tool that can be used to distinguish between the intolerant from tolerant SNP changes. (b) PolyPhen2: a structure and sequence-based physical and comparison tool to study the impact of amino acid substitution on the structure and function of human proteins and (c) I-Mutant2: to predict the protein stability changes arising due to single point mutations. Results: SIFT, PolyPhen2, and I-Mutant2 analyses indicated that 21 out of 108 nsSNPs were identified to be common that were strongly predicted to be deleterious and damaging for CTFR protein in cystic fibrosis conditions. Most of the substitutions in the CFTR protein contained the amino acids valine followed by cysteine and proline respectively. Homology modeling carried out to determine if any of these nsSNPs had a role in changing the conformation of CFTR protein drastically. Homology modeling of selected nsSNP variants indicated that these substitutions,however did not change the overall CFTR protein structure but predicted to cause severe damaging changes to the phenotypes of CFTR protein. Results indicated that multiple bioinformatics tools are needed to predictthe effect of substitutions and these prediction tools need to be analyzed more into detail and common determination factors are required to predict a nsSNP to be deleterious or damaging to the overall functioning of the CFTR protein. Conclusion: Multiple bioinformatics tools are in fact the need of the hour to establish if a strong relationship between nsSNPs that could alter the protein stability and cause a deleterious or damaging phenotypic change to the individual with cystic fibrosis involving the CFTR protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comprehensive in silico analysis of pathogenic nsSNPs in the NT5C2 gene involved in relapsed ALL

Background: About 10-20% of children suffering from acute lymphoblastic leukemia (ALL), experience a relapse, which is a major cause of their death. Purine nucleotide analogs are frequently prescribed to maintain the treatment of ALL. Cytosolic 5´-nucleotidase (NT5C2) catalyzes the 5´ dephosphorylation of purine analogs. Gain-of-function mutations in the NT5C2 gene result in resistance to the t...

متن کامل

Comprehensive Computational Analysis of Protein Phenotype Changes Due to Plausible Deleterious Variants of Human SPTLC1 Gene

Genetic variations found in the coding and non-coding regions of a gene are known to influence the structure as well as the function of proteins. Serine palmitoyltransferase long chain subunit 1 a member of α-oxoamine synthase family is encoded by SPTLC1 gene which is a subunit of enzyme serine palmitoyltransferase (SPT). Mutations in SPTLC1 have been associated with hereditary sensory and auto...

متن کامل

Computational approach towards identification of pathogenic missense mutations in AMELX gene and their possible association with amelogenesis imperfecta

Amelogenin gene (AMEL-X) encodes an enamel protein called amelogenin, which plays a vital role in tooth development. Any mutations in this gene or the associated pathway lead to developmental abnormalities of the tooth. The present study aims to analyze functional missense mutations in AMEL-X genes and derive an association with amelogenesis imperfecta. The information on miss...

متن کامل

A Comprehensive In Silico Analysis of the Functional and Structural Impact of Nonsynonymous SNPs in the ABCA1 Transporter Gene

Disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs), which are important indicators of action sites and effective potential therapeutic approaches. Identification of deleterious nsSNPs is crucial to characterize the genetic basis of diseases, assess individual susceptibility to disease, determinate molecular and therapeutic targets,...

متن کامل

Computational Methods to Work as First-Pass Filter in Deleterious SNP Analysis of Alkaptonuria

A major challenge in the analysis of human genetic variation is to distinguish functional from nonfunctional SNPs. Discovering these functional SNPs is one of the main goals of modern genetics and genomics studies. There is a need to effectively and efficiently identify functionally important nsSNPs which may be deleterious or disease causing and to identify their molecular effects. The predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016